289 research outputs found

    The VLQ Calorimeter of H1 at HERA: A Highly Compact Device for Measurements of Electrons and Photons under Very Small Scattering Angles

    Full text link
    In 1998, the detector H1 at HERA has been equipped with a small backward spectrometer, the Very Low Q^2 (VLQ) spectrometer comprising a silicon tracker, a tungsten - scintillator sandwich calorimeter, and a Time-of-Flight system. The spectrometer was designed to measure electrons scattered under very low angles, equivalent to very low squared four - momentum transfers Q^2, and high energy photons with good energy and spatial resolution. The VLQ was in operation during the 1999 and 2000 run periods. This paper describes the design and construction of the VLQ calorimeter, a compact device with a fourfold projective energy read-out, and its performance during test runs and in the experiment.Comment: 32 pages, 25 figures, 2 tables (To be submitted to Nucl. Instrum. Meth. A

    A Doubly Nudged Elastic Band Method for Finding Transition States

    Full text link
    A modification of the nudged elastic band (NEB) method is presented that enables stable optimisations to be run using both the limited-memory quasi-Newton (L-BFGS) and slow-response quenched velocity Verlet (SQVV) minimisers. The performance of this new `doubly nudged' DNEB method is analysed in conjunction with both minimisers and compared with previous NEB formulations. We find that the fastest DNEB approach (DNEB/L-BFGS) can be quicker by up to two orders of magnitude. Applications to permutational rearrangements of the seven-atom Lennard-Jones cluster (LJ7) and highly cooperative rearrangements of LJ38 and LJ75 are presented. We also outline an updated algorithm for constructing complicated multi-step pathways using successive DNEB runs.Comment: 13 pages, 8 figures, 2 table

    Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil

    Get PDF
    The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (0.2–2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid

    The ALICE silicon pixel detector read-out electronics

    Get PDF
    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the ALICE inner tracker system. The SPD contains 10 million pixels segmented in 120 detector modules (half staves), which are connected to the offdetector electronics with bidirectional optical links. Raw data from the on-detector electronics are sent to 20 FPGA-based processor cards (Routers) each carrying three 2-channel linkreceiver daughter-cards. The routers process the data and send them to the ALICE DAQ system via the ALICE detector data link (DDL). The SPD control, configuration and data monitoring is performed via the VME interface of the routers. This paper describes the detector readout and control via the off-detector electronics
    corecore